Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38700815

RESUMEN

Immunotherapy has emerged as a promising approach to cancer treatment, offering improved survival rates and enhanced patients' quality of life. However, realizing the full potential of immunotherapy in clinical practice remains a challenge, as there is still plenty of room for modulating the complexity of the human immune system in favor of an antitumor immunogenicity. Nanotechnology, with its unique properties, holds promise in augmenting the efficacy of cancer immunotherapies in biotherapeutic protection and site- and time-controlled delivery of the immune modulator biologicals. Polymeric nanoparticles are promising biomaterials among different nanocarriers thanks to their robustness, versatility, and cost-efficient design and production. This perspective paper overviews critical concepts in nanometric advanced delivery systems applied to cancer immunotherapy. We focus on a detailed exploration of the current state of the art and trends in using poly(beta-aminoester) (pBAE) polymers for nucleic acid-based antitumor immunotherapies. Through different examples of the use of pBAE polymers reported in the literature, we revise the main advantages these polymers offer and some challenges to overcome. Finally, the paper provides insights and predictions on the path toward the clinical implementation of cancer nano-immunotherapies, highlighting the potential of pBAE polymers for advancements in this field.

2.
RSC Adv ; 13(43): 29986-30001, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37842686

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the leading causes of worldwide death, mainly due to the lack of efficient and safe therapies. Currently, NSCLC standard of care for consist on the use of traditional chemotherapeutics, non-selectively distributed through the whole body, thus causing severe side effects while not achieving high efficacy outcomes. Consequently, the need of novel therapies, targeted to modify specific subcellular routes aberrantly expressed only in tumor cells is still urgent. In this context, the delivery of siRNAs that can know-down overexpressed oncogenes, such as mTOR, could become the promised targeted therapy. However, siRNA effective delivery remains a challenge due to its compromised stability in biological fluids and its inability to cross biological and plasmatic membranes. Therefore, polymeric nanoparticles that efficiently encapsulate siRNAs and are selectively targeted to tumor cells could play a pivotal role. Accordingly, we demonstrate in this work that oligopeptide end-modified poly(beta aminoester) (OM-pBAE) polymers can efficiently complex siRNA in small nanometric particles using very low polymer amounts, protecting siRNA from nucleases attack. These nanoparticles are stable in the presence of serum, advantageous fact in terms of in vivo use. We also demonstrated that they efficiently transfect cells in vitro, in the presence of serum and are able to knock down target gene expression. Moreover, we demonstrated their antitumor efficacy by encapsulating mTOR siRNA, as a model antisense therapy, which showed specific lung tumor cell growth inhibition in vitro and in vivo. Finally, through the addition of anisamide functionalization to the surface of the nanoparticles, we proved that they become selective to lung tumor cells, while not affecting healthy cells. Therefore, our results are a first step in the discovery of a tumor cell-targeted efficient silencing nanotherapy for NSCLC patients survival improvement.

3.
J Mater Chem B ; 11(27): 6412-6427, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37350113

RESUMEN

mRNA vaccination has emerged as a prominent therapy for the future of medicine. Despite the colossal advance in this technology and worldwide efficacy proof (ca. COVID vaccines), mRNA carriers still lack cell/tissue specificity, leading to possible side effects, and reduced efficacy among others. Herein we make use of the ubiquitous affinity of antigen-presenting cells (APC)s for glycosides to achieve specific targeting. To achieve this goal, we designed a new generation of α-mannosyl functionalized oligopeptide-terminated poly(ß-aminoester). Fine formulation of these polymers with mRNA resulted in nanoparticles decorated with surface-exposed α-mannoses with sizes around 180 nm and positive surface charge. Notably, these particles maintained their properties after freeze-drying and subsequent redispersion. Finally, our mRNA carriers preferentially targeted and transfected APCs in vitro and in vivo. In conclusion, we demonstrated, at a preclinical level, that the mannose functionalization enables more selective targeting of APCs and, thus, these polymer and nanoparticles are candidates for a new generation of mRNA immunotherapy vaccines.


Asunto(s)
COVID-19 , Nanopartículas , Vacunas , Humanos , Manosa , Bazo , Células Presentadoras de Antígenos , ARN Mensajero/genética
4.
J Control Release ; 358: 739-751, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37207793

RESUMEN

Nucleic acid-based therapies have become a game-changing player in our way of conceiving pharmacology. Nevertheless, the inherent lability of the phosphodiester bond of the genetic material with respect to the blood nucleases severely hampers its delivery in naked form, therefore making it necessary to use delivery vectors. Among the potential non-viral vectors, polymeric materials such as the poly(ß-aminoesters) (PBAEs) stand out as promising gene carriers thanks to their ability to condense nucleic acids in the form of nanometric polyplexes. To keep advancing these systems into their translational preclinical phases, it would be highly valuable to gain accurate insights of their in vivo pharmacokinetic profile. We envisaged that positron emission tomography (PET)-guided imaging could provide us with both, an accurate assessment of the biodistribution of PBAE-derived polyplexes, as well shed light on their clearance process. In this sense, taking advantage of the efficient [19F]-to-[18F]­fluorine isotopic exchange presented by the ammonium trifluoroborate (AMBF3) group, we have designed and synthesized a new 18F-PET radiotracer based on the chemical modification of a linear poly(ß-aminoester). As proof of concept, the incorporation of the newly developed 18F-PBAE into a model nanoformulation was shown to be fully compatible with the formation of the polyplexes, their biophysical characterization, and all their in vitro and in vivo functional features. With this tool in hand, we were able to readily obtain key clues about the pharmacokinetic behavior of a series of oligopeptide-modified PBAEs (OM-PBAEs). The observations described in this study allow us to continue supporting these polymers as an outstanding non-viral gene delivery vector for future applications.


Asunto(s)
Técnicas de Transferencia de Gen , Tomografía de Emisión de Positrones , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Polímeros/química , Terapia Genética
5.
J Med Chem ; 65(6): 4865-4877, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35235323

RESUMEN

Heparin-like macromolecules are widely used in clinics as anticoagulant, antiviral, and anticancer drugs. However, the search of heparin antidotes based on small synthetic molecules to control blood coagulation still remains a challenging task due to the physicochemical properties of this anionic polysaccharide. Here, we use a dynamic combinatorial chemistry approach to optimize heparin binders with submicromolar affinity. The recognition of heparin by the most amplified members of the dynamic library has been studied with different experimental (SPR, fluorescence, NMR) and theoretical approaches, rendering a detailed interaction model. The enzymatic assays with selected library members confirm the correlation between the dynamic covalent screening and the in vitro heparin inhibition. Moreover, both ex vivo and in vivo blood coagulation assays with mice show that the optimized molecules are potent antidotes with potential use as heparin reversal drugs. Overall, these results underscore the power of dynamic combinatorial chemistry targeting complex and elusive biopolymers.


Asunto(s)
Antídotos , Heparina , Animales , Anticoagulantes/química , Anticoagulantes/farmacología , Antídotos/farmacología , Coagulación Sanguínea , Heparina/química , Ratones , Polisacáridos
6.
J Neuromuscul Dis ; 8(5): 815-825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366365

RESUMEN

BACKGROUND: Duchenne Muscular Dystrophy (DMD) is one of the most common muscular dystrophies, caused by mutated forms of the dystrophin gene. Currently, the only treatment available is symptoms management. Novel approximations are trying to treat these patients with gene therapy, namely, using viral vectors. However, these vectors can be recognized by the immune system decreasing their therapeutic activity and making impossible a multidose treatment due to the induction of the humoral immunity following the first dose. OBJECTIVE: Our objective is to demonstrate the feasibility of using a hybrid vector to avoid immune clearance, based on the electrostatic coating of adeno-associated virus (AAVs) vectors with our proprietary polymers. METHODS: We coated model adeno-associated virus vectors by electrostatic interaction of our cationic poly (beta aminoester) polymers with the viral anionic capsid and characterized biophysical properties. Once the nanoformulations were designed, we studied their in vivo biodistribution by bioluminescence analysis and we finally studied the capacity of the polymers as potential coatings to avoid antibody neutralization. RESULTS: We tested two polymer combinations and we demonstrated the need for poly(ethylene glycol) addition to avoid vector aggregation after coating. In vivo biodistribution studies demonstrated that viral particles are located in the liver (short times) and also in muscles (long times), the target organ. However, we did not achieve complete antibody neutralization shielding using this electrostatic coating. CONCLUSIONS: The null hypothesis stands: although it is feasible to coat viral particles by electrostatic interaction with a proprietary polymer, this strategy is not appropriate for AAVs due to their small size, so other alternatives are required as a novel treatment for DMD patients.


Asunto(s)
Terapia Genética/métodos , Distrofia Muscular de Duchenne/inmunología , Electricidad Estática , Virión/inmunología , Animales , Dependovirus/inmunología , Distrofina/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos , Ratones , Distribución Tisular
7.
J Vis Exp ; (174)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34459811

RESUMEN

Vaccination has been one of the major successes of modern society and is indispensable in controlling and preventing disease. Traditional vaccines were composed of entire or fractions of the infectious agent. However, challenges remain, and new vaccine technologies are mandatory. In this context, the use of mRNA for immunizing purposes has shown an enhanced performance, as demonstrated by the speedy approval of two mRNA vaccines preventing SARS-CoV-2 infection. Beyond success in preventing viral infections, mRNA vaccines can also be used for therapeutic cancer applications. Nevertheless, the instability of mRNA and its fast clearance from the body due to the presence of nucleases makes its naked delivery not possible. In this context, nanomedicines, and specifically polymeric nanoparticles, are critical mRNA delivery systems. Thus, the aim of this article is to describe the protocol for the formulation and test of an mRNA vaccine candidate based on the proprietary polymeric nanoparticles. The synthesis and chemical characterization of the poly(beta aminoesters) polymers used, their complexation with mRNA to form nanoparticles, and their lyophilization methodology will be discussed here. This is a crucial step for decreasing storage and distribution costs. Finally, the required tests to demonstrate their capacity to in vitro transfect and mature model dendritic cells will be indicated. This protocol will benefit the scientific community working on vaccination because of its high versatility that enables these vaccines to prevent or cure a wide variety of diseases.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , ARN Mensajero , Vacunas Sintéticas , Humanos , ARN Mensajero/genética , SARS-CoV-2 , Vacunación , Vacunas de ARNm
8.
Mater Sci Eng C Mater Biol Appl ; 121: 111854, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579487

RESUMEN

Thymidine kinase expressing human adipose mesenchymal stem cells (TK-hAMSCs) in combination with ganciclovir (GCV) are an effective platform for antitumor bystander therapy in mice models. However, this strategy requires multiple TK-hAMSCs administrations and a substantial number of cells. Therefore, for clinical translation, it is necessary to find a biocompatible scaffold providing TK-hAMSCs retention in the implantation site against their rapid wash-out. We have developed a microtissue (MT) composed by TKhAMSCs and a scaffold made of polylactic acid microparticles and cell-derived extracellular matrix deposited by hAMSCs. The efficacy of these MTs as vehicles for TK-hAMSCs/GCV bystander therapy was evaluated in a rodent model of human prostate cancer. Subcutaneously implanted MTs were integrated in the surrounding tissue, allowing neovascularization and maintenance of TK-hAMSCs viability. Furthermore, MTs implanted beside tumors allowed TK-hAMSCs migration towards tumor cells and, after GCV administration, inhibited tumor growth. These results indicate that TK-hAMSCs-MTs are promising cell reservoirs for clinical use of therapeutic MSCs in bystander therapies.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Animales , Efecto Espectador , Línea Celular Tumoral , Ganciclovir/farmacología , Ratones , Neoplasias/terapia , Simplexvirus , Timidina Quinasa
9.
Adv Healthc Mater ; 8(19): e1900849, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31478348

RESUMEN

One of the main bottlenecks in the translation of nanomedicines from research to clinics is the difficulty in designing nanoparticles actively vectorized to the target tissue, a key parameter to ensure efficacy and safety. In this group, a library of poly(beta aminoester) polymers is developed, and it is demonstrated that adding specific combinations of terminal oligopeptides (OM-PBAE), in vitro transfection is cell selective. The current study aims to actively direct the nanoparticles to the liver by the addition of a targeting molecule. To achieve this objective, retinol, successfully attached to OM-PBAE, is selected as hepatic targeting moiety. It is demonstrated that organ biodistribution is tailored, achieving the desired liver accumulation. Regarding cell type transfection, antigen presenting cells in the liver are those showing the highest transfection. Thanks to proteomics studies, organ but not cellular biodistribution can be explained by the formation of differential protein coronas. Therefore, organ biodistribution is governed by differential protein corona formed when retinol is present, while cellular biodistribution is controlled by the end oligopeptides type. In summary, this work is a proof of concept that demonstrates the versatility of these OM-PBAE nanoparticles, in terms of the modification of the biodistribution of OM-PBAE nanoparticles adding active targeting moieties.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Polímeros/química , Corona de Proteínas/química , Animales , Supervivencia Celular , Citometría de Flujo , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Nanomedicina , Oligonucleótidos Antisentido , Oligopéptidos/química , Tamaño de la Partícula , Proteómica , Células RAW 264.7 , Vitamina A/química
10.
Sci Rep ; 9(1): 9549, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31267022

RESUMEN

The existence of radio- and chemotherapy-surviving cancer stem cells is currently believed to explain the inefficacy of anti-glioblastoma (GBM) therapies. The aim of this study was to determine if a therapeutic strategy specifically targeting GBM stem cells (GSC) would completely eradicate a GBM tumor. In both the in vitro and the in vivo models, ganciclovir therapy targeting proliferating GSC promotes the survival of a quiescent, stem-like cell pool capable of reproducing the tumor upon release of the therapeutic pressure. Images of small niches of therapy-surviving tumor cells show organized networks of vascular-like structures formed by tumor cells expressing CD133 or OCT4/SOX2. These results prompted the investigation of tumor cells differentiated to endothelial and pericytic lineages as a potential reservoir of tumor-initiating capacity. Isolated tumor cells with pericyte and endothelial cell lineage characteristics, grown under tumorsphere forming conditions and were able to reproduce tumors after implantation in mice.


Asunto(s)
Antígeno AC133/genética , Glioma/genética , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética , Antígeno AC133/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Ratones , Células Madre Neoplásicas/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo
11.
Mol Ther Oncolytics ; 11: 39-51, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30364660

RESUMEN

A preclinical model of glioblastoma (GB) bystander cell therapy using human adipose mesenchymal stromal cells (hAMSCs) is used to address the issues of cell availability, quality, and feasibility of tumor cure. We show that a fast proliferating variety of hAMSCs expressing thymidine kinase (TK) has therapeutic capacity equivalent to that of TK-expressing hAMSCs and can be used in a multiple-inoculation procedure to reduce GB tumors to a chronically inhibited state. We also show that up to 25% of unmodified hAMSCs can be tolerated in the therapeutic procedure without reducing efficacy. Moreover, mimicking a clinical situation, tumor debulking previous to cell therapy inhibits GB tumor growth. To understand these striking results at a cellular level, we used a bioluminescence imaging strategy and showed that tumor-implanted therapeutic cells do not proliferate, are unaffected by GCV, and spontaneously decrease to a stable level. Moreover, using the CLARITY procedure for tridimensional visualization of fluorescent cells in transparent brains, we find therapeutic cells forming vascular-like structures that often associate with tumor cells. In vitro experiments show that therapeutic cells exposed to GCV produce cytotoxic extracellular vesicles and suggest that a similar mechanism may be responsible for the in vivo therapeutic effectiveness of TK-expressing hAMSCs.

12.
Adv Healthc Mater ; 7(17): e1800335, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29923337

RESUMEN

The encapsulation of mRNA in nanosystems as gene vaccines for immunotherapy purposes has experienced an exponential increase in recent years. Despite the many advantages envisaged within these approaches, their application in clinical treatments is still limited due to safety issues. These issues can be attributed, in part, to liver accumulation of most of the designed nanosystems and to the inability to transfect immune cells after an intravenous administration. In this context, this study takes advantage of the known versatile properties of the oligopeptide end-modified poly (ß-amino esters) (OM-PBAEs) to complex mRNA and form discrete nanoparticles. Importantly, it is demonstrated that the selection of the appropriate end-oligopeptide modifications enables the specific targeting and major transfection of antigen-presenting cells (APC) in vivo, after intravenous administration, thus enabling their use for immunotherapy strategies. Therefore, with this study, it can be confirmed that OM-PBAE are appropriate systems for the design of mRNA-based immunotherapy approaches aimed to in vivo transfect APCs and trigger immune responses to fight either tumors or infectious diseases.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , ARN Mensajero/administración & dosificación , ARN Mensajero/metabolismo , Animales , Línea Celular , Supervivencia Celular , Portadores de Fármacos/química , Células HeLa , Humanos , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Polímeros/química , Células RAW 264.7
13.
Drug Deliv ; 25(1): 472-483, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29412012

RESUMEN

Glioblastoma multiforme (GBM) is the most devastating primary brain tumor due to its infiltrating and diffuse growth characteristics, a situation compounded by the lack of effective treatments. Currently, many efforts are being devoted to find novel formulations to treat this disease, specifically in the nanomedicine field. However, due to the lack of comprehensive characterization that leads to insufficient data on reproducibility, only a reduced number of nanomedicines have reached clinical phases. In this context, the aim of the present study was to use a cascade of assays that evaluate from physical-chemical and structural properties to biological characteristics, both in vitro and in vivo, and also to check the performance of nanoparticles for glioma therapy. An amphiphilic block copolymer, composed of polyester and poly(ethylene glycol; PEG) blocks, has been synthesized. Using a mixture of this copolymer and a polymer containing an active targeting moiety to the Blood Brain Barrier (BBB; Seq12 peptide), biocompatible and biodegradable polymeric nanoparticles have been prepared and extensively characterized. In vitro studies demonstrated that nanoparticles are safe for normal cells but cytotoxic for cancer cells. In vivo studies in mice demonstrated the ability of the Seq12 peptide to cross the BBB. Finally, in vivo efficacy studies using a human tumor model in SCID mice resulted in a significant 50% life-span increase, as compared with non-treated animals. Altogether, this assay cascade provided extensive pre-clinical characterization of our polymeric nanoparticles, now ready for clinical evaluation.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Nanopartículas/administración & dosificación , Polímeros/administración & dosificación , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Bovinos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Glioma/metabolismo , Glioma/patología , Humanos , Masculino , Ratones , Ratones SCID , Nanopartículas/metabolismo , Polímeros/metabolismo , Ratas , Ratas Wistar , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
14.
Oncotarget ; 8(48): 83384-83406, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29137351

RESUMEN

MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo. MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

15.
Mol Ther Nucleic Acids ; 8: 395-403, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28918039

RESUMEN

The use of non-viral procedures, together with CRISPR/Cas9 genome-editing technology, allows the insertion of single-copy therapeutic genes at pre-determined genomic sites, overcoming safety limitations resulting from random gene insertions of viral vectors with potential for genome damage. In this study, we demonstrate that combination of non-viral gene delivery and CRISPR/Cas9-mediated knockin via homology-directed repair can replace the use of viral vectors for the generation of genetically modified therapeutic cells. We custom-modified human adipose mesenchymal stem cells (hAMSCs), using electroporation as a transfection method and CRISPR/Cas9-mediated knockin for the introduction and stable expression of a 3 kb DNA fragment including the eGFP (selectable marker) and a variant of the herpes simplex virus 1 thymidine kinase genes (therapeutic gene), under the control of the human elongation factor 1 alpha promoter in exon 5 of the endogenous thymidine kinase 2 gene. Using a U87 glioma model in SCID mice, we show that the therapeutic capacity of the new CRISPR/Cas9-engineered hAMSCs is equivalent to that of therapeutic hAMSCs generated by introduction of the same therapeutic gene by transduction with a lentiviral vector previously published by our group. This strategy should be of general use to other applications requiring genetic modification of therapeutic cells.

16.
Tissue Eng Part C Methods ; 22(9): 864-72, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27339005

RESUMEN

Bioreactor systems allow safe and reproducible production of tissue constructs and functional analysis of cell behavior in biomaterials. However, current procedures for the analysis of tissue generated in biomaterials are destructive. We describe a transparent perfusion system that allows real-time bioluminescence imaging of luciferase expressing cells seeded in scaffolds for the study of cell-biomaterial interactions and bioreactor performance. A prototype provided with a poly(lactic) acid scaffold was used for "proof of principle" studies to monitor cell survival in the scaffold (up to 22 days). Moreover, using cells expressing a luciferase reporter under the control of inducible tissue-specific promoters, it was possible to monitor changes in gene expression resulting from hypoxic state and endothelial cell differentiation. This system should be useful in numerous tissue engineering applications, the optimization of bioreactor operation conditions, and the analysis of cell behavior in three-dimensional scaffolds.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular , Proliferación Celular , Procesamiento de Imagen Asistido por Computador/métodos , Mediciones Luminiscentes , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Tejido Adiposo/metabolismo , Técnicas de Cultivo de Célula , Humanos , Células Madre Mesenquimatosas/metabolismo , Perfusión , Andamios del Tejido
17.
Nanomedicine ; 12(7): 1885-1897, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27133189

RESUMEN

Conventional photodynamic therapy has shown to be beneficial in the treatment of a variety of tumors. However, one of its major limitations is the inadequate penetration depth of visible light. In order to overcome this constraint, we developed 80nm poly-methylmethacrylate core-shell fluorescent nanoparticles (FNP) loaded with the photosensitizer tetrasulfonated aluminum phthalocyanine (Ptl). To demonstrate the efficacy of our Ptl@FNP we performed in vitro and in vivo studies using a human prostate tumor model. Our data reveal that Ptl@FNP are internalized by tumor cells, favour Ptl intracellular accumulation, and efficiently trigger cell death through the generation of ROS upon irradiation with 680nm light. When directly injected into tumors intramuscularly induced in SCID mice, Ptl@FNP upon irradiation significantly reduce tumor growth with higher efficiency than the bare Ptl. Collectively, these results demonstrate that the newly developed nanoparticles may be utilized as a delivery system for antitumor phototherapy in solid cancers.


Asunto(s)
Indoles/administración & dosificación , Nanopartículas , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Línea Celular Tumoral , Humanos , Isoindoles , Masculino , Ratones , Ratones SCID
18.
Exp Cell Res ; 318(18): 2365-76, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22814251

RESUMEN

The induction of DNA double-strand breaks (DSBs) elicits a plethora of responses that redirect many cellular functions to the vital task of repairing the injury, collectively known as the DNA damage response (DDR). We have found that, in the absence of DNA damage, the DSB repair factors RNF8 and BRCA1 are associated with the nucleolus. Shortly after exposure of cells to γ-radiation, RNF8 and BRCA1 translocated from the nucleolus to damage foci, a traffic that was reverted several hours after the damage. RNF8 interacted through its FHA domain with the ribosomal protein RPSA, and knockdown of RPSA caused a depletion of nucleolar RNF8 and BRCA1, suggesting that the interaction of RNF8 with RPSA is critical for the nucleolar localization of these DDR factors. Knockdown of RPSA or RNF8 impaired bulk protein translation, as did γ-irradiation, the latter being partially countered by overexpression of exogenous RNF8. Our results suggest that RNF8 and BRCA1 are anchored to the nucleolus through reversible interactions with RPSA and that, in addition to its known functions in DDR, RNF8 may play a role in protein synthesis, possibly linking the nucleolar exit of this factor to the attenuation of protein synthesis in response to DNA damage.


Asunto(s)
Proteína BRCA1/metabolismo , Nucléolo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteína BRCA1/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ubiquitina-Proteína Ligasas
19.
J Clin Invest ; 122(5): 1849-68, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22505459

RESUMEN

Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs.


Asunto(s)
Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Forma de la Célula , Técnicas de Cocultivo , Células Epiteliales/fisiología , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estadificación de Neoplasias , Trasplante de Neoplasias , Neoplasias de la Próstata , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción de la Familia Snail , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Neoplasias de la Vejiga Urinaria , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
20.
PLoS One ; 5(6): e11403, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20613989

RESUMEN

BACKGROUND: Several pathways that control cell survival under stress, namely RNF8-dependent DNA damage recognition and repair, PCNA-dependent DNA damage tolerance and activation of NF-kappaB by extrinsic signals, are regulated by the tagging of key proteins with lysine 63-based polyubiquitylated chains, catalyzed by the conserved ubiquitin conjugating heterodimeric enzyme Ubc13-Uev. METHODOLOGY/PRINCIPAL FINDINGS: By applying a selection based on in vivo protein-protein interaction assays of compounds from a combinatorial chemical library followed by virtual screening, we have developed small molecules that efficiently antagonize the Ubc13-Uev1 protein-protein interaction, inhibiting the enzymatic activity of the heterodimer. In mammalian cells, they inhibit lysine 63-type polyubiquitylation of PCNA, inhibit activation of NF-kappaB by TNF-alpha and sensitize tumor cells to chemotherapeutic agents. One of these compounds significantly inhibited invasiveness, clonogenicity and tumor growth of prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: This is the first development of pharmacological inhibitors of non-canonical polyubiquitylation that show that these compounds produce selective biological effects with potential therapeutic applications.


Asunto(s)
Proteínas/metabolismo , Ubiquitinación , Animales , Catálisis , Células HeLa , Humanos , Ratones , Modelos Animales , Modelos Moleculares , FN-kappa B/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...